The RNA polymerase has done its job (or in the case of prokaryotes, may still be in the process of doing its job), so now what happens to the RNA? For RNA that is destined to provide instructions for making a protein, then it needs to be translated, which is a job for Superman™! Oops, actually it’s a job for ribosomes.

Ribosomes are a complex of RNA and protein that bind to and processively move down (from 5’ to 3’ end) a strand of mRNA, picking up aminoacyl-tRNAs, checking to see if they are complementary to the RNA tri-nucleotide being “read” at the moment, and adding them to the new polypeptide chain if they are. The RNA part of the ribosomes are generated by the organism’s general purpose RNA polymerase in prokaryotes, and generated by the RNA polymerases I and III in eukaryotes. Recall that RNA Pol II is used by eukaryotes to generate protein-coding mRNA’s. Although the numbers of RNA strands and protein subunits differ between the prokaryote and eukaryote, the mechanism for translation is remarkably well conserved.

Figure 1. Two views of a prokaryotic ribosome. The large ribosomal subunit (50S) is shown in red, while the small ribosomal subunit (30S) is shown in blue. 3D images generated from data in the RCSB Protein Data Bank.

Using this book: This book is designed to be used in both introductory and advanced cell biology courses. The primary text is generally on the left side of the vertical divider, and printed in black. Details that are usually left to an advanced course are printed in blue and found on the right side of the divider. Finally, additional biomedically relevant information can be found in red print on either side of the divider.
Prokaryotic ribosomes

The prokaryotic ribosomes contain 3 RNA strands and 52 protein subunits which can be divided into 1 RNA and 21 proteins in the small ribosomal subunit (aka the 30S subunit) and 2 RNA and 31 proteins in the large ribosomal subunit (50S subunit). The small subunit locates the start site and moves along the RNA. The large ribosomal subunit contains the aminoacyl transferase enzyme activity that connects amino acids to make a protein. Neither subunit is sufficient to carry out translation by itself. They must come together to form the full 70S ribosome for translation to occur. If you aren’t already familiar with the nomenclature, you’re probably thinking that it’s obvious why I went into biology rather than math. My competence at basic computation aside, there is a method to the madness. The “S” in 30S or 50S indicates Svedberg units, or a measurement of the sedimentation rate when the molecules in question are centrifuged under standard conditions. Because the rate of sedimentation depends on both the mass and the shape of a molecule, numbers do not always add up.

The genes for the prokaryotic rRNA molecules are arranged in an operon and thus come from a single transcript. Depending on the organism, there may be several such operons in the genome to ensure steady production of this crucial enzymatic complex. However, these RNAs are not translated, so instead of having multiple translation start codons to signal the beginning of each gene, the single transcript is cleaved post-transcriptionally by Ribonuclease III (RNase III) into 25S, 18S, and 5S segments, and these are then further trimmed by RNase III and RNase M into the final 23S, 16S, and 5S rRNAs found in the ribosomes. Although the 5S does not appreciably differ in sedimentation rate, it is in fact slightly “shaved” in post-transcriptional editing.

Eukaryotic ribosomes

Like the RNA molecules in prokaryotic ribosomes, the eukaryotic rRNA molecules are also post-transcriptionally cleaved from larger transcripts. This processing, and the subsequent assembly of the large and small ribosomal subunits are carried out in the nucleolus, a region of the nucleus specialized for ribosome production, and containing not only high concentrations of rRNA and ribosomal proteins, but also RNA polymerase I and RNA polymerase III. In contrast, RNA polymerase II, as befits its broader purpose, is found throughout the nucleus. The 40S small ribosomal subunit in eukaryotes also has just 1 rRNA, and has 33 proteins. The 60S, or large ribosomal subunit in eukaryotes has three rRNA molecules, two of which are roughly analogous to the prokaryote (28S and 5S eukaryotic, 23S and 5S prokaryotic), and one, the 5.8S, that binds with complemen-

Because of the density of material in the nucleolus needed for constant ribosome production, it is often readily visible under various types of microscopy despite not being bounded by a membrane.
ary sequence on part of the 28S rRNA. It also contains 50 proteins. These ribosomal subunits have roughly the same function as the prokaryotic versions: the small subunit in conjunction with various initiation factors is responsible for finding the start site and positioning the ribosome on the mRNA, while the large subunit houses the docking sites for incoming and spent aminoacyl-tRNAs and contains the catalytic component to attach amino acids via peptide bonds.

The ribosomal RNA precursors (pre-rRNA) are remarkably conserved in eukaryotes, with the 28S, 5.8S, and 18S rRNAs encoded within a single transcript. This transcript, synthesized by RNA polymerase I, always has the same 5' to 3' order: 18S, 5.8S, 28S. After the 45S pre-rRNA is transcribed, it is immediately bound by nucleolar proteins in preparation for cleavage and base modification. However, it is primarily the small nucleolar RNAs (snoRNAs), not the proteins, that determine the position of the modifications. The primary modifications are 2'-hydroxylmethylation and transformation of some uridines into pseudouridines. These snoRNAs are sometimes transcribed independently by RNA polymerase III or II, but often are formed from the introns of pre-mRNA transcripts. Oddly, some of these introns come from pre-mRNAs that form unused mRNAs!

For the nucleolus to be the site of ribosome assembly, the ribosomal proteins must be available to interact with the rRNAs. By mechanisms discussed in the next chapter, the mRNAs for the ribosomal proteins are translated (as are all proteins) in the cytoplasm, but the resulting proteins are then imported into the nucleus for assembly into either the large or small ribosomal subunit. The subunits are then exported back out to the cytoplasm, where they can carry out their function.

The Genetic Code

We have blithely described the purpose of the DNA chromosomes as carrying the information for building the proteins of the cell, and the RNA as the intermediary for doing so. Exactly how is it, though, that a molecule made up of just four different nucleotides joined together (albeit thousands and even thousands of thousands of them), can tell the cell which of twenty-odd amino acids to string together to form a functional protein? The obvious solution was that since there are not enough individual unique nucleotides to code for each amino acid, there must be combinations of nucleotides that designate particular amino acids. A doublet code, would allow for only 16 different combinations (4 possible nucleotides in the first position x 4 possible nucleotides in the 2nd position = 16 combinations) and would not be enough to encode the 20 amino acids. However, a triplet code would yield 64 combinations, easily enough to encode
20 amino acids. So would a quadruplet or quintuplet code, for that matter, but those would be wasteful of resources, and thus less likely. Further investigation proved the existence of a triplet code as described in the table below.

<table>
<thead>
<tr>
<th>1st base</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>UUU</td>
</tr>
<tr>
<td>UUC</td>
</tr>
<tr>
<td>UUA</td>
</tr>
<tr>
<td>UUG</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>CUC</td>
</tr>
<tr>
<td>CUA</td>
</tr>
<tr>
<td>CUG</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>AUC</td>
</tr>
<tr>
<td>AUA</td>
</tr>
<tr>
<td>AUG</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>GUC</td>
</tr>
<tr>
<td>GUA</td>
</tr>
<tr>
<td>GUG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2nd base</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
</tr>
<tr>
<td>UUU</td>
</tr>
<tr>
<td>UUC</td>
</tr>
<tr>
<td>UUA</td>
</tr>
<tr>
<td>UUG</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>CUC</td>
</tr>
<tr>
<td>CUA</td>
</tr>
<tr>
<td>CUG</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>AUC</td>
</tr>
<tr>
<td>AUA</td>
</tr>
<tr>
<td>AUG</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>GUC</td>
</tr>
<tr>
<td>GUA</td>
</tr>
<tr>
<td>GUG</td>
</tr>
</tbody>
</table>

The colloquial names were started when the discoverers of UAG decided to name the codon after a friend whose last name translated into “amber”. Opal and ochre were named to continue the idea of giving stop codons color names.

The stop codons are sometimes also used to encode what are now considered the 21st and 22nd amino acids, selenocysteine (UGA) and pyrrolysine (UAG). These amino acids have been discovered to be consistently encoded in some species of prokarya and archaea.

With so many combinations and only 20 amino acids, what does the cell do with the other possibilities? The genetic code is a **degenerate code**, which means that there is redundancy so that most amino acids are encoded by more than one triplet combination (codon). Although it is a redundant code, it is not an ambiguous code: under normal circumstances, a given codon encodes one and only one amino acid. In addition to the 20 amino acids, there are also three “stop codons” dedicated to ending translation. The three stop codons also have colloquial names: UAA (ochre), UAG (amber), UGA (opal), with UAA being the most common in prokaryotic genes. Note that there are no dedicated start codons: instead, AUG codes for both methionine and the start of translation, depending on the circumstance, as explained forthwith. The initial Met is a methionine, but in prokaryotes, it is a specially modified formyl-methionine (f-Met). The tRNA is also specialized and is different from the tRNA that carries methionine to the ribosome for addition to a growing polypeptide. Therefore, in referring to a loaded initiator tRNA, the usual nomenclature is fMet-tRNAf, or fMet-tRNAf. There also seems to be a little more leeway in defining the start site in prokaryotes than in eukaryotes, as some bacteria use GUG or UUG. Though these codons normally encode valine and leucine, respectively, when they are used as start codons, the initiator tRNA brings in f-Met.
Although the genetic code as described is nearly universal, there are some situations in which it has been modified, and the modifications retained in evolutionarily stable environments. The mitochondria in a broad range of organisms demonstrate stable changes to the genetic code including converting the AGA from encoding arginine into a stop codon and changing AAA from encoding lysine to encoding asparagine. Rarely, a change is found in translation of an organismic (nuclear) genome, but most of those rare alterations are conversions to or from stop codons.

tRNAs are rather odd ducks

In prokaryotes, tRNA can be found either as single genes or as parts of operons that can also contain combinations of mRNAs or rRNAs. In any case, whether from a single gene, or after the initial cleavage to separate the tRNA transcript from the rest of the transcript, the resulting pre-tRNA has an N-terminal leader (41 nt in E. coli) that is excised by RNase P. That cleavage is universal for any prokaryotic tRNA. After that, there are variations in the minor excisions carried out by a variety of nucleases that produce the tRNA in its final length though not its mature sequence, as we will see in a few paragraphs.

Eukaryotic pre-tRNA (transcribed by RNA polymerase III) similarly has an N-terminal leader removed by RNase P. Unlike the prokaryote though, the length can vary between different tRNAs of the same species. Some eukaryotic pre-tRNA transcripts also contain introns, especially in the anticodon loop, that must be spliced out for the tRNA to function normally. These introns are different from the self-splicing or spliceosome-spliced transcripts discussed in the transcription chapter. Here, the splicing function is carried out not by ribozymes, but by conventional (protein) enzymes. Interestingly, RNaseP also removes a 3’ sequence from the pre-tRNA, but then another 3’ sequence is added back on. This new 3’ end is always CCA, and is added by three successive rounds with tRNA nucleotidyl transferase.

Earlier in this textbook, when RNA was introduced, it was noted that although extremely similar to DNA on many counts, it is normally single stranded, and that property, combined with the opportunity for complementary base pairing within a strand, allows it to do something far different than double-stranded DNA: it can form highly complex secondary structures. One of the simplest and clearest examples of this is tRNA, which depends on its conformation to accomplish its cellular function. The prototypical cloverleaf-form tRNA diagram is shown in fig. 2 on the left, with a 3D model derived from x-ray crystallographic data on the right. As you can see, the fully-splayed-out shape

Other minor alterations to the genetic code exist as well, but the universality of the code in general remains. Some mitochondrial DNAs can use different start codons: human mitochondrial ribosomes can use AUA and AUU. In some yeast species, the CGA and CGC codons for arginine are unused. Many of these changes have been cataloged by the National Center for Biotechnology Information (NCBI) based on work by Jukes and Osawa at the University of California at Berkeley (USA) and the University of Nagoya (Japan), respectively.
has four stem-loop “arms” with the amino acid attached to the acceptor arm, which is on the opposite side of the tRNA from the anticodon arm, which is where the tRNA must match with the mRNA codon during translation. Roughly perpendicular to the acceptor-anticodon axis are the D arm and the T_{\psi}C arm. In some tRNAs, there are actually five total arms with a very short loop between the T_{\psi}C and anticodon arms. The arm-like stem and loop structures are formed by two areas of strong complementarity (the stems, base-paired together) interrupted by a short non-complementary sequence (the loop). In general terms, the arms are used to properly position the tRNA within the ribosome as well as recognizing the mRNA codon and bringing in the correct amino acid.

When it comes time for the tRNA to match its anticodon with the codon on the mRNA, the code is not followed “to the letter” if you will pardon the pun. There is a phenomenon called “wobble” in which a codon-anticodon match is allowed and stabilized for translation even if the nucleotide in the third position is not complementary. Wobble can occur because the conformation of the tRNA allows a little flexibility to that position of the anticodon, permitting H-bonds to form where they normally would not. This is not a universal phenomenon though: it only applies to situations where a U or a G is in the first position of the anticodon (matching the third position of codon). Following the convention of nucleic acid sequences, the sequence is always written 5’ to 3’, even though in the case of codon-anticodon matching, the strands of mRNA and tRNA are antiparallel:

\[
\begin{align*}
tRNA &\quad 3' \quad U \quad A \quad A \quad 5' \\
mRNA &\quad 5' \quad A \quad U \quad U \quad 3'
\end{align*}
\]
In addition to being allowed a bit of wobble in complementary base-pairing, tRNA molecules have another peculiarity. After being initially incorporated into a tRNA through conventional transcription, there is extensive modification of some of the bases of the tRNA. This affects both purines and pyrimidines, and can range from simple additions such as methylation or extensive restructuring of the sugar skeleton itself, as in the conversion of guanosine to wyosine (W). Over 50 different modifications have been catalogued to date. These modifications can be nearly universal, such as the dihydrouridine (D) found in the tRNA D loop, or more specific, such as the G to W conversion found primarily in tRNA^{Phe} of certain species (examples have been identified in both prokaryotic and eukaryotic species). As many as 10% of the bases in a tRNA may be modified. Naturally, alterations to the sugar base of the nucleotides can also alter the base-pairing characteristics. For example, one common modified base, inosine, can complement U, C, or A. This aberrant complementary base pairing can be equal among the suitor bases, or it may be biased, as in the case of 5-methoxyuridine, which can recognize A, G, or U, but the recognition of U is poor.

The knowledge of the genetic code begs the question: how is the correct amino acid attached to any given tRNA? A class of enzymes called the aminoacyl tRNA synthetases are responsible for recognizing both a specific tRNA and a specific amino acid, binding an ATP for energy and then joining them together (sometimes called charging the tRNA) with hydrolysis of the ATP. Specificity is a difficult task for the synthetase since amino acids are built from the same backbone and are so similar in mass. Distinguishing between tRNA molecules is easier, since they are larger and their secondary structures also allow for greater variation and therefore greater ease of discrimination. There is also a built-in pre-attachment proofreading mechanism in that tRNA molecules that fit the synthetase well (i.e. the correct ones) maintain contact longer and allow the reaction to proceed whereas ill-fitting and incorrect tRNA molecules are likely to disassociate from the synthetase before it tries to attach the amino acid.

Charging an aminoacyl tRNA synthetase with its amino acid requires energy. The synthetase first binds a molecule of ATP and the appropriate amino acid, which react resulting in the formation of aminoacyl-adenylate and pyrophosphate. The PPI is released and the synthetase now binds to the proper tRNA. Finally, the amino acid is transferred to the tRNA. Depending on the class of synthetase, the amino acid may attach to the 2'-OH of the terminal A (class I) or to the 3'-OH of the terminal A (class II) of the tRNA. Phe-tRNA synthetase is the exception: it is structurally a class II enzyme but transfers the Phe onto the 2'-OH. Note that amino acids transferred onto the 2'-OH are soon moved to the 3'-OH anyway due to a transesterification reaction.
As soon as the RNA has emerged from the RNAP and there is sufficient space to accommodate a ribosome, translation can begin in prokaryotes. In fact, for highly expressed genes, it would not be unusual to see multiple RNA polymerases transcribing the DNA and multiple ribosomes on each of the transcripts translating the mRNA to protein! The process begins with the small ribosomal subunit (and only the small subunit - if it is attached to the large subunit, it is unable to bind the mRNA), which binds to the mRNA loosely and starts to scan it for a recognition sequence called the Shine-Dalgarno sequence, after its discoverers. Once this is recognized by the small ribosomal subunit rRNA, the small subunit is positioned around the start codon (AUG). This process is facilitated by initiation factors as follows. The 30S ribosomal subunit dissociates from the 50S ribosomal subunit if it was associated with one, and binds to initiation factors IF-1 and IF-3. IF-1 binds to the A site, where it prevents new aminoacyl-tRNA molecules from entering before the full ribosome is assembled. It also facilitates the assembly and stabilization of the initiation complex. IF-3 is required to allow the 30S subunit to bind to mRNA. Once this has occurred, IF-2-GTP arrives on scene, carrying with it the initiator aminoacyl-tRNA. This settles into the P site, where it is positioned so that the anticodon of the tRNA settles over the AUG start codon of the mRNA. Hydrolysis of the GTP attached to IF-2 and release of all the initiation factors is needed to allow the 50S subunit to bind to the 30S subunit to form the full and fully functional ribosome. Because GTP hydrolysis was required, the joining of the subunits is irreversible spontaneously, and requires expenditure of energy upon termination of translation. Once the 50S subunit joins with the 30S subunit, the A site is ready to accept the next aminoacyl-tRNA.

Figure 3. Initiation of Translation in Prokaryotes. (A) 30S subunit binds to Shine-Dalgarno sequence. (B) fMet-tRNAi is loaded into the middle slot of the small ribosomal subunit. Initiation factors occupy the other two slots. (C) The large ribosomal subunit docks with the small subunit. (D) The initiation factors are released and the ribosome is ready to start translation.

Figure 4. Peptide bond formation at the addition of the third amino acid. The previous two amino acids are peptide bonded together as well as attached to the tRNA from the second amino acid. The aminoacyl-tRNA bond is broken and transferred/transformed to the peptide bond connecting the initial dipeptide to the third amino acid.
A common and understandable misconception is that the new amino acid brought to the ribosome is added onto the growing polypeptide chain. In fact, the mechanism is exactly the opposite: the polypeptide is added onto the new amino acid (fig. 4). This begins from the second amino acid to be added to a new protein (fig. 5). The first amino acid, a methionine, you should recall, came in along with IF-2 and the initiator tRNA. The new aminoacyl-tRNA is escorted by EF-Tu, an elongation factor that carries a GTP. Once the aa-tRNA is in place, EF-Tu hydrolyzes the GTP and dissociates from the aminoacyl-tRNA and ribosome.

For a long time, there was a bit of mystery surrounding the simultaneous docking of two tRNA molecules on immediately adjacent codons of mRNA. Under normal conditions, there should not be enough room, since the tRNAs are fairly bulky and one should obstruct the other from reaching the mRNA to make a codon-anticodon match. The matter was finally cleared up in 2001 with x-ray crystallographic examinations showing a bend in the mRNA between the codon in the P slot and the codon in the A slot. The bend puts the two associated tRNAs at slightly different angles and thus creates just enough room for both to maintain basepairing hydrogen bonds with the mRNA. See Yusupov et al, Science 292 (5518): 883-896, 2001.

Figure 5. Elongation of the polypeptide chain. (A) a new aminoacyl-tRNA drops into the A slot of the ribosome. (B) the fMet is moved off its tRNA, and peptide-bonded to the new amino acid, which is still attached to its tRNA. (C) Ribosome shifts over to the right. (D) empty tRNA is ejected.
When a new aminoacyl-tRNA drops into the A slot of the ribosome, the anticodon is
lined up with the codon of the mRNA. If there is no complementarity, the aminoacyl-
tRNA soon floats back out of the slot to be replaced by another candidate. However,
if there is complementarity (or something close enough, recalling the idea of wobble)
then H-bonds form between the codon and anti-codon, the tRNA changes conformation,
which shifts the conformation of EF-Tu, causing hydrolysis of GTP to GDP + Pi,
and release from the aa-tRNA. The codon-anticodon interaction is stable long enough
for the catalytic activity of the ribosome to hydrolyze the bond between fMet and the
tRNAf in the P slot, and attach the fMet to the new amino acid with a peptide bond in
the A slot. The new amino acid is still attached to its tRNA, and as this process occurs,
the ribosome shifts position with respect to the mRNA and tRNAs. This puts the now-
empty (no amino acid attached) tRNAf in the E slot, the tRNAaa in the P slot, attached
to that aa which is bonded to Met, and the A slot is again open for a new tRNA to
come in. The elongation factor EF-G binds near the A slot as soon as EF-Tu leaves, and
is required for ribosomal translocation, providing energy for the process by hydrolyz-
ing a GTP that it carries with it to the ribosome. From my students’ experiences, the
best way to learn this seems to be to study the diagrams and see the movements of the
molecules, filling in the mechanistic details in your mind. This process continues until
the ribosome brings the A slot in line with a stop codon.

There is no tRNA with an anticodon for the stop codon. Instead, there is a set of release
factors that fit into the A site of the ribosome, bind to the stop codon, and activate the
ribosome to cut the bond between the polypeptide chain and the last tRNA (fig. 6). Depending
on which stop codon is present either RF1 (recognizes UAA or UAG) or RF2
(for UAA or UGA) first enters the A slot. The RF1 or RF2 is complexed with RF3, which is
involved in subsequent releasing of the RF complex from the A slot. This is necessary
because once the polypeptide has been released from the ribosome, the mRNA must
be released. Ribosome releasing factor (RRF) also binds in the A slot, which causes a
conformational change in the ribosome releasing the previous and now empty tRNA.
Finally, EF-G binds to RRF, and with an accompanying hydrolysis of GTP, causes dis-
sociation of the ribosome into separate large and small subunits. Note that it is the
combination of EF-G/RRF that causes dissociation; EF-G alone plays a different role in
ribosome movement when it is not at the stop codon.

Figure 6. Termination of translation.
Eukaryotic Translation

Eukaryotic translation, as with transcription, is satisfyingly similar (from a student studying point of view, or from an evolutionary conservation one) to the prokaryotic case. The initiation process is slightly more complicated, but the elongation and termination processes are the same, but with eukaryotic homologues of the appropriate elongation and release factors.

Figure 7. Initiation of Translation in Eukaryotes.
For eukaryotes, each mRNA encodes one and only one gene (as opposed to multi-gene transcripts such as operons), so there isn’t much question of which AUG is a start codon, and which are just regular methionines. Therefore, there is no requirement for a Shine-Dalgarno sequence in eukaryotes. The small ribosomal subunit, accompanied by eukaryotic initiation factors eIF-3, eIF-2, and Met-tRNAi, together known as the ternary complex, binds to eIF-1A. Meanwhile, eIF-4A, -4B, -4E, and -4G bind to the 5’ (7-methylguanosine) cap of the mRNA (fig. 7A). The small subunit complex and the eIF4/mRNA cap-binding complex interact to form the 43S complex, which then begins scanning the mRNA from 5’ to 3’ looking for the first AUG.

Once the 43S scanning complex has found the start codon, the initiation factors drop off, and the large ribosomal subunit arrives. The large ribosomal subunit has bound eIF-6, which prevents it from reassociating with small subunits, and its removal is required first. Another factor, eIF-5 enters the scene during the coupling process between the large and small ribosomal subunits, and hydrolysis of an eIF-5-attached GTP is required to complete the docking of the subunits and the formation of a complete functional ribosome on the mRNA.

Elongation is functionally the same as in prokaryotes except that the functions of EF-Tu is taken care of by EF-1\(\alpha\), also with hydrolysis of GTP. EF-2 is the eukaryotic analog of EF-G, and utilizes GTP hydrolysis for translocation of the ribosome. Termination uses eukaryotic homologues of the release factors, though eRF-1 takes the place of both prokaryotic RF-1 and RF-2.

Although polyribosomes (aka polysomes) can form on both prokaryotic and eukaryotic mRNAs, eukaryotic polysomes have an additional twist. Technically, a polysome is simply an mRNA with multiple ribosomes translating it simultaneously, but in eukaryotes, the polysome also has a unique morphology because it utilizes PABPI, or poly-A binding protein. This protein not only binds to the 3’ poly-A tail of an mRNA, it also interacts with the eIF-4 initiation factors, which thus loops the mRNA into a circular shape. That way, once the ribosome reaches the end of the gene and releases from the mRNA, it is physically near the beginning of the mRNA to start translating again.

Usually, but not always, the first AUG is the start codon for eukaryotic genes. However, the context of the AUG matters, and it is a much stronger (i.e. more frequently recognized and used) start codon if there is a purine residue (A or G) at -3 and a G at +4. See Kozak, M., *Biochimie* 76: 815-821, 1994.
Regulation of Translation

Gene expression is primarily regulated at the pre-transcriptional level, but there are a number of mechanisms for regulation of translation as well. One well-studied animal system is the iron-sensitive RNA-binding protein, which regulates the expression of genes involved in regulating intracellular levels of iron ions. Two of these genes, ferritin, which safely sequesters iron ions inside cells, and transferrin, which transports iron from the blood into the cell, both utilize this translational regulation system in a feedback loop to respond to intracellular iron concentration, but they react in opposite ways. The key interaction is between the iron response elements (IRE), which are sequences of mRNA that form short stem-loop structures, and IRE-BP, the protein that recognizes and binds to the IREs. In the case of the ferritin gene, the IRE sequences are situated upstream of the start codon. When there is high iron, the IRE-BP is inactive, and the stem-loop structures are melted and overrun by the ribosome, allowing translation of ferritin, which is an iron-binding protein. As the iron concentration drops, the IRE-BP is activated and binds around the IRE stem-loop structures, stabilizing them and preventing the ribosome from proceeding. This prevents the production of ferritin when there is little iron to bind.

![Diagram](https://example.com/ferritin-diagram.png)

Figure 8. Pre-translational control of gene expression by iron-response protein (IRP), which binds to either the iron-response element (IRE), unless it has bound iron.

Transferrin also uses iron response elements and IRE-binding proteins, but in a very different mechanism. The IRE sequences of the transferrin gene are located downstream of the stop codon, and play no direct role in allowing or preventing translation.
However, when there is low intracellular iron and there is a need for more transferrin to bring iron into the cell, the IRE-BP is activated as in the previous case, and it binds to the IREs to stabilize the stem-loop structures. In this case; however, it prevents the 3’ poly-A tail degradation that would normally occur over time. Once the poly-A tail is degraded, the rest of the mRNA is destroyed soon thereafter. As mentioned in the transcription chapter, the longer poly-A tails are associated with greater persistence in the cytoplasm, allowing more translation before they are destroyed. The IRE-BP system in this case externally prolongs the lifetime of the mRNA when that gene product is needed in higher amounts.

Since mRNA is a single-stranded nucleic acid and thus able to bind complementary sequence, it is not too surprising to find that one of the ways that a cell can regulate translation is using another piece of RNA. Micro RNAs (miRNAs) were discovered as very short (~20 nucleotides) non-protein-coding genes in the nematode, C. elegans. Since their initial discovery (Lee et al, Cell 75: 843-54, 1993), hundreds have been found in various eukaryotes, including humans. The expression pattern of the miRNA genes is highly specific to tissue and developmental stage. Many are predicted to form stem-loop structures, and appear to hybridize to 3’-untranslated sequences of mRNA thus blocking initiation of translation on those mRNA molecules. They may also work through a mechanism similar to the siRNA discussed below, but there is clear evidence that mRNA levels are not necessarily altered by miRNA-directed translational control.

Another mechanism for translational control that uses small RNA molecules is RNA interference (RNAi). This was first discovered as an experimentally induced repression of translation when short double-stranded RNA molecules, a few hundred nucleotides in length and containing the same sequence as a target mRNA, were introduced into cells. The effect was dramatic: most of the mRNA with the target sequence was quickly destroyed. The current mechanistic model of RNAi repression is that first, the double-stranded molecules are cleaved by an endonuclease called Dicer, which cleaves with over-hanging single-stranded 3’ ends. This allows the short fragments (siRNA, ~20nt long) to form a complex with several proteins (RISC, RNA-induced silencing complex). The RISC splits the double-stranded fragments into single strands, one of which is an exact complement to the mRNA. Because of the complementarity, this is a stable interaction, and the double-stranded region appears to signal an endonuclease to destroy the mRNA/siRNA hybrid.

The final method of controlling levels of gene expression is control after the fact, i.e., by targeted destruction of the gene product protein. While some proteins keep working until they fall apart, others are only meant for short-term use (e.g. to signal a short phase in the cell cycle) and need to be removed for the cell to function prop-

MicroRNAs are currently under investigation for their roles as either oncogenes or tumor suppressors (reviewed in Garzon et al, Ann. Rev. Med. 60: 167-79, 2009). Approximately half of known human miRNAs are located at fragile sites, breakpoints, and other regions associated with cancers (Calin et al, Proc. Nat. Acad. Sci. (USA) 101: 2999-3004, 2004). For example, miR-21 is not only up-regulated in a number of tumors, its overexpression blocks apoptosis - a necessary step to allow abnormal cells to continue to live and divide rather than die out. Conversely, miR-15a is significantly depressed in some tumor cells, and overexpression can slow or stop the cell cycle, even inducing apoptosis.
Removal, in this sense, would be a euphemism for chopped up and recycled. The ubiquitin-proteasome system is a tag-and-destroy mechanism in which proteins that have outlived their usefulness are polyubiquitinated. Ubiquitin is a small (76 amino acids, ~5.6 kDa), highly conserved (96% between human and yeast sequences) eukaryotic protein (fig. 9) that can be attached to other proteins through the action of three sequential enzymatic steps, each catalyzed by a different enzyme.

E1 activates the ubiquitin by combining it with ATP to make ubiquitin-adenylate, and then transfers the ubiquitin to itself via a cysteine thioester bond. Through a trans(thio) esterification reaction, the ubiquitin is then transferred to a cysteine in the E2 enzyme, also known as ubiquitin-conjugating enzyme. Finally, E3, or ubiquitin ligase, interacts with both E2-ubiquitin and the protein designated for destruction, transferring the ubiquitin to the target protein. After several rounds, the polyubiquitinated protein is sent to the proteasome for destruction.

Mutations in E3 genes can cause a variety of human medical disorders such as the neurodevelopmental disorders Angelman syndrome, Hippel-Lindau syndrome, or the general growth disorder known as 3-M syndrome. Mechanisms linking malfunction in ubiquitination pathways and symptoms of these disorders are not currently known.

Figure 9. Ubiquitin. This 3D representation was generated from the file 1ubi (synthetic human ubiquitin) in the RCSB Protein Data Bank

Figure 10. Polyubiquitination of a targeted protein (blue) requires three ubiquitinating enzymes, E1, E2, and E3. Once tagged, the protein is positioned in the proteasome by binding of the polyubiquitin tail to the outer surface of the proteasome. The proteasome then cleaves the protein into small polypeptides.
Proteasomes are very large protein complexes arranged as a four-layered barrel (the 20S subunit) capped by a regulatory subunit (19S) on each end. The two outer rings are each composed of 7 \(\alpha \) subunits that function as entry gates to the central rings, each of which is composed of 7 \(\beta \) subunits, and which contain along the interior surface, 6 proteolytic sites. The 19S regulatory units control the opening and closing of the gates into the 20S catalytic barrel. The entire proteasome is sometimes referred to as a 26S particle.

A polyubiquitinated protein is first bound to the 19S regulatory unit in an ATP-dependent reaction (the 19S contains ATPase activity). 19S unit opens the gates of the 20S unit, possibly involving ATP hydrolysis, and guides the protein into the central proteolytic chamber. The protease activity of proteasomes is unique in that it is a threonine protease, and it cuts most proteins into regular 8-9 residue polypeptides, although this can vary.

As we will see in the cell cycle chapter, proteasomes are a crucial component to precise regulation of protein functions.